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It is often the case that a substantial number of torsion angles
(both backbone and sidechain) in structures of proteins and nu-
cleic acids determined by NMR are found in physically unlikely
and energetically unfavorable conformations. We have previously
proposed a database-derived potential of mean force comprising
one-, two-, three-, and four-dimensional potential surfaces which
describe the likelihood of various torsion angle combinations to
bias conformational sampling during simulated annealing refine-
ment toward those regions that are populated in very high reso-
lution (=1.75 A) crystal structures. We now note a shortcoming of
our original implementation of this approach: namely, the forces it
places on atoms are very rough. When the density of experimental
restraints is low, this roughness can both hinder convergence to
commonly populated regions of torsion angle space and reduce
overall conformational sampling. In this paper we describe a
modification that completely eliminates these problems by replac-
ing the original potential surfaces by a sum of multidimensional
Gaussian functions. Structures refined with the new Gaussian imple-
mentation now simultaneously enjoy excellent global sampling and
excellent local choices of torsion angles.

INTRODUCTION

of mean force 4) comprising one-, two-, three-, and four-
dimensional potential surfaces which describe the likelihooc
for various torsion angle combination3, @). Unlike covalent
geometry restraints that relate to small-scale structural feature
and are confined to a single expectation value, the torsion ang
potentials of mean force permit several alternative conforma
tional possibilities. This is achieved by biasing the sampling
during simulated annealing refinement to conformations tha
are likely to be energetically possible by effectively limiting
the choices of dihedral angles to those that are known to b
physically realizableZ). An example of such a restraint is a
potential energy term that expresses the likelihood of a partic
ular residue type having a given set @fiy backbone torsion
angles and whose surface has minima located irxthelical,
B-sheet, and left-handed helical regions of the Ramachandre
plot. Because the potential energy surfaces are created fro
protein crystal structures, these larger scale conformations
database restraints are individually much less precise tha
traditional covalent geometry restraints, which originate from
small molecule X-ray structures at atomic resolution. Even so
we have shown that inclusion of the torsion angle potential of
mean force improves the local accuracy of NMR structures

Protein structure determination by NMR involves the optisignificantly without affecting the agreement with the experi-
mization of an underrestrained function. The number and gevental NMR restraints? 3).

metric specificity of the available experimental restraints,
namely NOE-derived interproton distances, scalar couplings,
chemical shifts, and dipolar couplings, are insufficient to de-
termine the structure of a protein in their own righj.(Con-  Experience with our original implementation of the torsion
sequently, the use o& priori information in the form of angle potential of mean force,(3) (which we will now refer
covalent geometry restraints (bond lengths and angles, chitgl-as “DELPHIC torsions,” fodatabaseslucidatedlikelihood

ity, and planarity) and a van der Waals term (typically in thephor’ internalcoordinates) has suggested that in certain case
form of some sort of simplified repulsive potential to prevent may be rather difficult to optimize by simulated annealing.
atomic overlap) is an essential prerequisitp (n two recent For example, in some structures refined against the DELPHIC
papers, we have shown that it is also possible, given the currgsision potential, a small number of residues occasionall
availability of Iarge numbers of very high-resolutio&l.?S appears to be stuck in po@r/d; conformations, even though
A) crystal structures, to include larger scale information relaghere are no restraints holding them there.

ing to protein and nucleic acids aspriori restraints 2, 3. The DELPHIC potential surfaces do not appear to the eye t
These restraints are in the form of a database-derived potergiglrough enough to present difficulties to optimization (Fig.
1a), and indeed one-dimensional slices through these potentic
show them to be reasonably smooth (Fig. 1b). The sligh
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andz directions. The “blockiness” that appeared to be minor in
the potential surface is now obvious, and in several places eve
the direction of the force changes instantaneously. Presumabl
these atomic forces are so erratic because the convolution fro
torsion angle to Cartesian coordinate space magnifies the sms
inaccuracies of the interpolated potential. Since simulated annec
ing by means of molecular dynamics assumes that the forces ¢
atoms are continuous, the degree of roughness seen in our origir
implementation of the DELPHIC torsion potential can obviously
cause the type of convergence problem we have noted.

REPLACING THE INTERPOLATED POTENTIAL

BY A SUM OF GAUSSIANS

To eliminate the problems associated with the rough deriv
atives of the interpolated DELPHIC torsion potential, we have

=180 =12 =EE 0 oF  TEg 160 replaced the interpolated table of raw potential of mean force

values with a sum of fitted Gaussian curves, which are guar
anteed to have continuous derivatives. In the two-dimensionz

b case individual Gaussians are of the form

energy
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FIG. 1. The DELPHIC torsion potential surface for the backbapigs
angles of threonine. (a) The two-dimensiogéls potential surface, generated
from 638 threonine residues in a database of high-resolutidn7 A) protein
crystal structures as described 8).(The surface is color coded from red (low
energy) to purple (high energy), with contours drawn in 1 kcal/mol increments.
(b) A one-dimensional slice through this potential, taken ingkgheet region
(i = 139°).

“blockiness” of the potential at this level is an artifact of our
implementation. Specifically, the potential of mean force is
determined in 10° steps (as described in Rfand the values
at any particular torsion angle value are calculated by linear
interpolation from the neighboring grid points. Similarly, the
derivative of the potential with respect to the torsion angle is
estimated from the local slope of the potential, calculated from
the heights of the grid points that surround the particular
torsion angle of interest.

Inspection of the Cartesian-space atomic forces that the
DELPHIC potential produces yields a surprise: they are ex-

gaussheight, centgy centey, width,, width,,

position, position)

= height * exg—shortestDelta@entey,
position) */width,) * exp (—shortestDelte&centey,
position)) %/width,)

oE/ox

[
A NN O N A~ O

oE/dy

AN O N S~ O

oE/dz

..
ANV O N MO

-180 -120 -60 O 60 120 180
¢

tremely rough. '_:igure 2 shows the maglnitUde .Of th_e force oreiG. 2. Forces on the backbone nitrogen atom of threonine generated b
the backbone nitrogen atom of a threonine residue irxthg the DELPHIC torsion potential as a function of the backbone torsion afigle
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1 . ically in Fig. 3. For each Gaussian, the point on the raw
o* o o . ) potential surface with the greatest absolute value energy i
0 | e o e_ original potential - , .
. . . located. Its position gives the center of the new Gaussian, an
T . .’ . . its energy is its height. Four estimates of the new Gaussian’
-2 o . . of width are made along each axis, using the energies at the gr
3 - o* points (centet2), (center-1), (center-1), and (centef2),
4 using the equation
- [ ]
5 *
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FIG. 3. lllustration of the iterative Gaussian fitting procedure. The top
panel shows the original interpolated potential, determined from the potential (0)

of mean force in 10° intervals. A Gaussian is fitted to it as described in the text
(middle panel) and subtracted off. The remaining potential (lower panel) is
then used to fit another Gaussian, and the procedure is repeated. A maximum
of 32 Gaussians is used to fit each potential surface.

where height is the height of the Gaussian at its center, it
center is defined by centeand centey, its width along each
axis is defined by widthand width, the position to be eval
uated is defined by positigmnd positioy, and shortestDelta is =
given by

>
o
.
o
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B |a — b if |]a—b| <180, ) ; i e
shortest Deltéa, b) = 36 la — D] otherwise. 180 - 120 - 60 ?P 60 120 180

Similar functions were defined to allow fitting of Gaussians to FIG. 4. Example of the Gaussian DELPHIC torsion potential surface. (a)

one-. two-. three-. and four-dimensional potentials of med’ﬁe two-dimensionad/V potential surface for threonine, calculated from the
forcé ' ' sum of 32 two-dimensional Gaussians fitted as described in the text. (b) /

. o one-dimensional slice through this potentiaNat= 139°, showing, by com-
Each raw pot_entlal Of_mea_n force Surfacej is fitted by a SUBrison with Fig. 1b, the detailed agreement of the original interpolated anc
of these Gaussian functions in the manner illustrated schemadussian potentials.
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TESTING THE GAUSSIAN DELPHIC
TORSION POTENTIAL

M To evaluate the performance of the Gaussian DELPHIC
torsion potential, we calculated a series of structures with the

sequence of the B1 domain of streptococcal proteiB)&iging
a standard Cartesian-space simulated annealing protéxol (
with the program XPLORY), comprising 1000 steps (5 fs per
step) at 2000 K, followed by 3000 steps (5 fs per step) of
cooling down to 100 K, and finally 250 steps of conjugate
W gradient minimization. No experimental restraints were used ir
the calculations and the target function comprised terms for th
covalent geometry and a quartic van der Waals repulsion tern
In addition, a radius of gyration restrair})(was included to
ensure that the coordinates moved significantly from theil
starting conformation (an extended strand), had realistic pack
ing density, and yielded final structures that included severa
turn conformations. Twenty structures were calculated with the
Gaussian DELPHIC torsion potential, 20 with the interpolated
DELPHIC torsion potential, and 20 without the DELPHIC
-180 -120 -60 O 60 120 180 torsion potential.
® All the calculated structures had excellent agreement witt
_ _ standard covalent geometry and no van der Waals overlap
FIG. 5. _ Forces on the bgckbone mtrogen atom'of threonine generatedﬁﬁoCHECK,s V) evaluation of the structures, however, var-
the Gaussian DELPHIC torsion potential, as a function of the backbone torsion, ~ . .
angled. Note their similarity to the original forces (Fig. 2), and their reduce(!xed W|d6|y (Table 1)' Structures calculated with no DELPHIC
extrema in the neighborhood ¢f = 90°. torsion potential only had 2% 6% of their residues in the most
favorable regions of the Ramachandran plot, compared tb 85
3 and 95+ 3% for those calculated with the interpolated and
where centerPosition and neighborPosition are the positions@dussian DELPHIC potentials, respectively. Although the in-
the center of the Gaussian and the neighboring grid point being
used to estimate the width, and centerHeight and neigh-
borHeight are the values of the potential of mean force at the TABLE 1
center and neighboring grid points. The individual width estiRamachadran Statistics for the Ensemble of Structures Calculated
mates from the four neighboring grid points along each axis are with and without the DELPHIC Torsion Potential®
averaged to give the width of the new Gaussian along that axis.
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Finally, the value of the new Gaussian at every grid point in the DEI’_\‘;’HIC 'rgérl_p;’;ﬁtgd SS&‘S;‘%‘
raw surfac_e is subtracted from.the raw surfacg, leaving & NeW, centage of residues i potential potential potential
raw potential of mean force. This process was iterated 32 times
for each different type of potential surface, yielding 32 Gaus4ost favored regions 212 6 85.5+ 3 945+ 3
sians whose sum reproduces the original interpolated potentigditionally allowed regions 46.6: 7 8.4+3 36+2
with reasonable accuracy Generously allowed regions 22495 35+2 161

) Disallowed regions 9.3 5 26*2 0.2+ 0.6

Inspection of the resulting Gaussian DELPHIC torsion pa-
te'_"t!al Surface§ (Fig. 4) shows that the Gaussm.ns reproduce theryenty structures were calculated for each ensemble by simulated annez
original potential surface reasonably well, both in overall termisy, as described in the text and starting from an extended stiard-{135°,
(F|g 4a) and in detail (F|g 4b) The Cartesian_space forces o 139°). The target function in all cases comprises terms for covalent

the atoms that the Gaussian DELPHIC torsion potential pl,g)e_ometry (bonds, angles, and improper torsions), a quartic van der Waa
fulsion term to prevent atomic overlap, and a radius of gyration term with ¢

d hown in Fig. 5. Besides being obviousl the
uces are shown In Fig. o. Besldes being obviously Smoo Sget value of 9.5 A. One ensemble was calculated with no DELPHIC torsior

_their magnitudes are very close .tO those prodgced by th&le potential. The other two ensembles were calculated with the DELPHIC
interpolated potential (Fig. 2), with one exception. In thersion angle potential included in the target function for simulated annealing
interpolated potential, the region arouhd= 90° shows a very either in its original interpolated form or in the Gaussian form. The final values

; g ik he various force constants are as follows: 1000 koal ™ - A% for bonds,
large discontinuity in the forces, which instantaneously chan_@%‘o keal mol”* - rad ? for angles and improper torsions, 4 keahol - A

from large nega?lve.to Iarge _posmve v_alues. T_he Gauss'?or;'the van der Waals repulsion term with the hard-sphere radii set to 0.8 time
DELPHIC potential, in smoothing C.)ut.t.hIS transition, reducegeir value in the CHARMM19/20 parameters, and 20 for the DELPHIC
the extreme values of the forces significantly. torsion angle potential.
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terpolated DELPHIC potential clearly results in a big improve-
ment in the quality of the Ramachandran plot, the simulated
annealing schedule is unable to converge to structures with the
lowest DELPHIC torsion potential energies. This is due to the
presence of rough forces that leave certain residues caught in
higher energy conformations, as evidenced by 2-3 and 3—4%
of residues remaining in disallowed and generously allowed
regions, respectively, of the Ramachandran plot. The sig-
nificant additional improvement offered by the Gaussian
DELPHIC torsion potential (see Table 1) indicates that the
smoother forces from the Gaussian surface effectively elimi-
nate the convergence problem.

To evaluate the conformational sampling for the three sets of
structures, the mean coordinates for each ensemble were usec
to best fit each individual structure (Fig. 6). The average p
backbone root mean square deviation (rmsd) of each structure
to its mean coordinate positions provides a measure of confor-
mational sampling, with larger rmsd values indicating better
sampling. Structures calculated with no DELPHIC torsion po-
tential had backbone rmsd values of #.1.7 A to their mean.
Surprisingly, structures calculated using the interpolated
DELPHIC torsion potential only showed a backbone rmsd
value of 4.0+ 0.9 A. Visual inspection of the structures (Fig.

6) confirms the poor sampling with the interpolated DELPHIC
torsion potential. This sampling problem had gone undetected
in our previous tests of the interpolated DELPHIC torsion
(2, 3 because those earlier calculations were only performed
using complete sets of experimental restraints where the inclu-
sion of the interpolated DELPHIC potential did not result in an
increase in coordinate precision. The source of the sampling
and convergence problems are the same: namely, the rough
forces prevent the coordinates from moving easily through
certain regions of Ramachandran space, thereby inhibiting
full sampling. The structures calculated using the Gaussian
DELPHIC torsion potential have a backbone rmsd value of
7.9+ 1 A indicating that the smoother forces have eliminated
the sampling problems as well.

It should be emphasized that for structures calculated with a
large number of NMR restraints, there is little to choose from
between the interpolated and Gaussian DELPHIC potentials.
For example, in the case of the 33-kDa MEF2A-DNA complex
that was solved on the basis of 4560 experimental NMRFIG. 6. Ensemble of structures calculated with (a) no DELPHIC torsion
restraints (including numerous torsion angle restraint§), ( potential, (b) the original interpolated DELPHIC torsion potential, and (c) the
essentially no overall difference can be detected between str@gussian DELPHIC torsion potential. The structures were calculated as de
tures calculated with the interpolated and Gaussian DELPHT’_@ibed in the text, and are best fitted to the mean coordinate positions of

. . . iven ensemble.
potentials, and both the overall precision of the coordinatés
(0.5-0.6 A) and the percentage of residues in the most favor-
able region of the Ramachandran map (which spans a range of CONCLUDING REMARKS
83-92% with a mean value87—-88%) are very similar. Where
one would clearly expect the Gaussian DELPHIC potential to We have uncovered a shortcoming of our original imple-
have a clear cut advantage over the interpolated one wouiéntation of the DELPHIC torsion potentia2,(3), which
be in cases of structures calculated with very few NMR raeeks to bias structures toward combinations of torsion angle
straints (1). that are commonly seen in protein crystal structures. Ou

a
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original implementation produced surprisingly rough forces on quality of NMR and crystallographic protein structures by means of
the atoms involved in a given torsion ang|e or groups of torsion 2 conformational database potential derived from structure data-
. . . . bases, Prot. Sci. 5, 1067-1080 (1996).
angles, which in turn reduced both conformational sampling _
and convergence to structures with commonly seen torsioh J- Kuszewski, A. M. Gronenborn, and G. M. Clore, Improvements
. . . and extensions in the conformational database potential for the
angl.es' This 0_'063 not present an issue when _CaICUIatlonS A€ efinement of NMR and X-ray structures of proteins and nucleic
carried out with very complete sets of experimental NMR  acids, J. Magn. Reson. 125, 171-177 (1997)
restraints, but does become Slgn'f'cam when calculations e M. J. Sippl, Calculation of conformation ensembles from potentials
carried out with minimal experimental NMR restraints. By  of mean force: An approach to the knowledge-based prediction of
replacing our original implementation with one that evaluates local structures in globular proteins, J. Mol. Biol. 213, 859-883
the potential energy, and thus the atomic forces it produces, (1990).
with a sum of several multidimensional Gaussians, we hav® A. M. Gronenborn, D. R. Filpula, N. Z. Essig, A. Achari, M. Whitlow,
completely eliminated these rough forces. Smoothing out the P- T- Wingfield, and G. M. Clore, A novel, highly stable fold of the
atomic forces removes any sampling and convergence prob- g?_”ggf'&g;"l? domain of streptococcal protein G, Science 253,
lems, resulting in structures that sample all the possibilities that , ' o
. . . . . 6. M. Nilges, G. M. Clore, and A. M. Gronenborn, Determination of
are _cqnsstgnt with the exp_enmental restraints, but which also three-dimensional structures of proteins from interproton distance
exhibit torsion angle combinations that are as good as those gata by hybrid distance geometry-dynamical simulated annealing
seen in high-resolution<{1.75 A) crystal structures. We also calculations, FEBS Lett. 229, 317-324 (1988).
expect that the Gaussian DELPHIC potentials will be useful foy. a. T. Bringer, “XPLOR: A System for NMR and Crystallography,”
the refinement of low-resolution X-ray structures of macromol- Yale Univ. Press, New Haven, CT (1992).
ecules. 8. J. Kuszewski, A. M. Gronenborn, and G. M. Clore, Improving the
packing and accuracy of NMR structures with a pseudopotential
ACKNOWLEDGMENTS for the radius of gyration, J. Am. Chem. Soc. 121, 2337-2338
(1999).
We thank Frank Delaglio for useful discussions. The complete source cod®, R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton,

plus associated files and examples, for the NIH version of XPLOR, which PROCHECK: A program to check the stereochemical quality of
includes the DELPHIC potentials, is available either directly from G.M.C.  protein structures, J. Appl. Cryst. 26, 283-291 (1993).

(clore@speck.niddk.nih.gov) or by anonymous ftp at portal.niddk.nih.gov ifyy Huang, J. M. Louis, L. Donaldson, F.-L. Lim, A. D. Sharrocks,

the directory /pubJclore/xplor_nih. and G. M. Clore, Solution structure of the MEF2A-DNA complex:
Structural basis for the modulation of DNA bending and specificity
REFERENCES by MADS-box transcription factors, EMBO J. 19, 2615-2628

(2000).
1. G. M. Clore and A. M. Gronenborn, New methods of structure 11, G. M. Clore, M. R. Starich, C. A. Bewley, M. Cai, and J. Kuszewski,
refinement for macromolecular structure detemination by NMR, Impact of residual dipolar couplings on the accuracy of NMR
Proc. Natl. Acad. Sci. U.S.A. 95, 5891-5898 (1998). structures determined from a minimal number of NOE restraints,

2. J. Kuszewski, A. M. Gronenborn, and G. M. Clore, Improving the J. Am. Chem. Soc. 121, 6513-6514 (1999).



	INTRODUCTION
	THE PROBLEM
	FIG. 1

	REPLACING THE INTERPOLATED POTENTIALBY A SUM OF GAUSSIANS
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5

	TESTING THE GAUSSIAN DELPHICTORSION POTENTIAL
	TABLE 1
	FIG. 6

	CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

